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It was recently shown@I. W. Stewart, T. Carlsson, and F. M. Leslie, Phys. Rev. E49, 2130 ~1994!# that
chaotic instabilities can occur theoretically in planar samples of smectic-C liquid crystals. These instabilities
were found by considering a special perturbation to the dynamic equation when a static electric field was
augmented by a weak, slowly oscillating electric field across a sample of smectic-C liquid crystal. This
analysis relied on a special traveling-wave solution of the dynamic equation. In this paper we show that there
are also other solutions~subharmonics! with different boundary conditions that do not exhibit chaos and these
solutions can be related to sample depth. An application of a Melnikov theory for subharmonics in the phase
plane provides criteria for the existence of nonchaotic solutions to the specially perturbed dynamic equation.
Such criteria involve the normalized frequency of the augmented field and its magnitude; the present analysis
gives insight into the special previous results involving chaos and gives a general phase plane interpretation of
solutions, confirming that both chaotic and nonchaotic behavior is possible, depending on the sample depth,
boundary conditions, and properties of the augmented oscillating field.@S1063-651X~96!03812-3#

PACS number~s!: 61.30 Cz

I. INTRODUCTION

Liquid crystals are generally composed of elongated mol-
ecules where the average long molecular axes locally align
along one common direction in space described by a unit
vectorn, called the director. Smectic-C liquid crystals form
layered structures in which the directorn makes an angleu
with respect to the layer normal. We shall assume thatu is
always some fixed constant. The unit layer normal is denoted
by a and, as introduced by de Gennes@1#, a unit vectorc that
is perpendicular toa describes the direction of the average
molecular tilt of the sample with respect to the layer normal.
The directorc is the unit orthogonal projection ofn onto the
smectic planes. A complete description of the orientation of
n in smectic liquid crystals can clearly be deduced from the
knowledge ofa andc. The orientation ofc ~and hencen! is
known to be influenced by the application of electric fields
@1–3#, the result commonly being a Fre´edericksz transition in
the case of strong anchoring, which occurs whenc begins to
rotate around the layer normal while the layers remain intact.
Static and moving domain walls that leave the layer structure
undisturbed are also possible@4–6#.

In @7# the existence of chaotic instabilities in the orienta-
tion of c ~and hence the molecular axes! was theoretically
demonstrated when a static electric field augmented by a
weak, slowly oscillating field is applied across a sample of
smectic liquid crystal arranged in parallel planar layers, this
field making a small angle with the plane of the layers. Criti-
cal values for the onset of chaotic dynamics were found for
the frequency and strength of the oscillating field and smec-
tic tilt angle when reasonable approximations were made.
The existence result presented in@7# made use of an explicit
static field solution to the partial differential equation derived
from the continuum theory of Leslie, Stewart, and Nakagawa
@8#. Augmenting the static field with a weak, slowly oscillat-

ing field enabled a perturbation analysis to be carried out
based on the known exact solution for the static field case.
The resulting perturbed partial differential equation was
transformed to a second-order nonlinear ordinary differential
equation and the phase plane for this equation was shown to
have separatrices~homoclinic orbits! that corresponded to
the possible static field solutions. Melnikov’s method~see
@9#! was then employed to prove the existence of chaotic
solutions whenever the initial data were chosen sufficiently
close to the separatrices in the phase plane, that is, whenever
the known exact solutions were perturbed by a suitable small
oscillating field. It is the purpose of this article to complete a
full analysis of the phase plane and examine the conse-
quences for any initial data, not necessarily near the separa-
trices @7#. It will be shown that if the initial data are chosen
far enough away from the separatrices, then perturbed peri-
odic solutions do exist.

II. DESCRIPTION OF THE PROBLEM

In this section we summarize the equations derived in@7#,
where full details can be found. The essential governing
equation is~2.19! below. A phase plane interpretation of
special unperturbed solutions representing traveling domain
walls is also introduced. Other unperturbed solutions that are
periodic in the phase plane will be derived. These unper-
turbed orbits will form the basis for applying the subhar-
monic Melnikov method to Eq.~2.19! in order to determine
the stability or persistence of perturbed periodic solutions to
~2.19!.

A. Basic equations

Consider a sample of nonchiral smectic-C liquid crystal
in the bulk where the equidistant smectic layers lie parallel

PHYSICAL REVIEW E DECEMBER 1996VOLUME 54, NUMBER 6

541063-651X/96/54~6!/6413~11!/$10.00 6413 © 1996 The American Physical Society



with the xy plane, the unit layer normala being parallel to
thez axis~see Fig. 1!. The directorsa andc are subject to the
constraints

a•a5c•c51, a•c50 ~2.1!

and, since we assume there are no dislocations,a must fur-
ther fulfill @10#

¹3a50. ~2.2!

An electric fieldE is applied across the sample at a small
anglea to the plane of the layers

E5E0S 11
e

2
cos~vet ! D ~cosa,0,sina!. ~2.3!

Equation~2.3! corresponds to a static electric field~of mag-
nitudeE0) that is gradually augmented by a small ac field
having a slowly varying frequencyve wheree is suitably
small.

We make the following ansatz fora,c, andn:

a5~0,0,1!, ~2.4!

c5„cosf~z,t !,sinf~z,t !,0…, ~2.5!

n5a cosu1c sinu, ~2.6!

where, as depicted in Fig. 1, the orientation ofc within the
layers is given by the phase anglef(z,t). The resulting bulk
energy density is given by@7#

wbulk5
1

2
B3S ]f

]z D 2. ~2.7!

HereB3 is the positive elastic constant related to the rotation
of the c director observed from layer to layer,c having the
same uniform orientation within each individual layer~see
@3# for more details!. The electric free energy density is@1#

welec52 1
2 eae0~n•E!2, ~2.8!

wheree0 is the permittivity of free space andea is the di-
electric anisotropy of the liquid crystal, assumed to be posi-
tive. We set

w5wbulk1welec. ~2.9!

If it is assumed thatueu!1, then we can use Eqs.~2.3!–~2.9!
and the smectic continuum dynamic theory of Leslie, Stew-
art, and Nakagawa@8# to derive the dynamic equation

B3

]2f

]z2
22l5

]f

]t
2eae0E0

2@11e cos~vet !#

3~sina cosu1cosa sinu cosf!cosa sinu sinf50.

~2.10!

Herel5 is the viscosity coefficient related to the rotation of
the directorn around a ficticious cone whose semivertical
angle equals the smectic tilt angleu.

As shown in@7#, to make Eq.~2.10! more tractable we
assume that 0,a!1 and

e5ja ~2.11!

for some positive constantj, which is essentially related to
the magnitude of the ac field. To simplify the equation fur-
ther we introduce the typical length and time scales

l5
sinu

E0
S B̄3

eae0
D 1/2, ~2.12!

t052l5 /eae0E0
2 , ~2.13!

respectively, where we have used the fact that the elastic
constantB3 has a tilt angle dependenceB3;B̄3sin

2u. The
constantB̄3 is approximately the temperature-independent
part of B3 ~see @3# for details!. For mathematical conve-
nience we introduce the rescaled frequencyv̄ as

v̄5
vjt0
sin2u

. ~2.14!

Motivated by the static field solutions discussed in@7,5#, we
investigate solutions of the form

f~z,t !5f~t!, ~2.15!

t5
z2z0

l
2

t

t0
a sin2u, ~2.16!

where z0 is an arbitrary point. Examining the behavior of
solutions nearz0 means that we can further suppose

uz2z0u,
al

t0vj
sin2u. ~2.17!

With the assumptions contained in Eqs.~2.11!–~2.17!, Eq.
~2.10! becomes

d2f

dt2
1a

df

dt
5a cotu sinf1

1

2
@11ja cos~v̄t!#sin~2f!,

~2.18!

which can be rewritten in the equivalent first-order system

FIG. 1. Average molecular alignment described by the unit vec-
tor n, which makes an angleu with the layer normala. The director
c is the unit vector parallel to the projection of the directorn onto
the smectic planes. Thez axis coincides with the orientation of the
layer normala and thex andy axes lie within the smectic planes.
The electric fieldE makes an anglea with the smectic planes as
shown.
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d

dtS f

v D 5S v
1
2 sin~2f!

D
1aS 0

2v1cotu sinf1
j

2
cos~v̄t!sin~2f!D

5S f 1~f,v !

f 2~f,v !D 1aS g1~f,v,t!

g2~f,v,t!D
5f~f,v !1ag~f,v,t!, ~2.19!

wherev5df/dt and, for ease of notation below, we have
introduced the functionsf(f,v) andg(f,v,t) as indicated.

In @7# it was demonstrated that Eq.~2.19! can exhibit
chaotic dynamics wheneveru andv̄ lie within certain ranges
@dependent upon the fixed value ofj in ~2.12!#. Since the
choice ofz0 is arbitrary it can be concluded that chaos may
be present wherever the ac field is applied. Nevertheless, this
result is based solely upon the fact that~2.19! can be consid-
ered as a special perturbation to the unperturbeda50 ver-
sion of ~2.19! for certain initial data lying on either of two
separatrices in the phase plane representing traveling domain
walls. A natural question to ask is whether or not it is pos-
sible to carry out a similar analysis for other orbits in the
phase plane, corresponding to initial data that are not neces-
sarily close to these separatrices. This requires the phase
plane approach, which is discussed next.

B. The unperturbed phase plane

When a50 the solutions to~2.19! include the separa-
trices in the phase plane as shown in Fig. 2, which repeats
itself everyp. The arrow represents the direction of the so-
lution in the phase plane ast→1` ~this corresponds to
t→2`: reversing the arrows gives thet→1` behavior!.
Two such homoclinic orbits are possible, labeledq1 and

q21 as indicated in the figure. Fora50 the exact expres-
sions for these orbits are solutions to~2.19!, namely,

q1~t!5~f,v !5„2 tan21@exp~t!#, secht…

5„cos21~2tanht!, secht…, ~2.20!

q21~t!5~f,v !5„p22 tan21@exp~t!#,2secht…

5„p2cos21~2tanht!,2secht…. ~2.21!

q61 represent walls that arise from the dielectric and elastic
torques: these walls are known to be chaotically unstable for
initial data chosen in the phase plane sufficiently close to
either of theq61 orbits @7#.

At this point it is clear from Fig. 2 that other trajectories
are available~labeledqk). These consist of two types of sub-
harmonic periodic orbits, those between the separatrices and
those outside the separatrices, as shown in the figure. Choos-
ing initial data„f(0),v(0)… at any point then determines a
solution to ~2.19! whena50. Our analysis in the sections
below depends on a perturbation to these known exact solu-
tions.

At a50 the unperturbed system~2.19! has Hamiltonian
H given by

H~f,v !5 1
2v

21 1
4 cos~2f! ~2.22!

since

]H

]v
5v, 2

]H

]f
5
1

2
sin~2f!. ~2.23!

To obtain the exact solutions for the subharmonics we con-
sider the possibilities forH to be constant and set

H„qk~t!…5 1
4 ~2k221!5hk , ~2.24!

where k is a parameter, the form ofhk arising from the
constant of integration and being chosen to simplify the no-
tation used below. It turns out thatk can be thought of as
being related to the sample depth, as discussed in Sec. II C
below. From~2.22! and ~2.24!

S df

dt D 25k2S 12
1

k2
cos2f D ~2.25!

and therefore

t56
1

kE0
f dh

A12
1

k2
cos2h

. ~2.26!

Some of the qualitative features of the phase plane repre-
sented in Fig. 2 will now be examined and related to the
sample depth and existence of walls. We now examine the
inner and outer subharmonics in the phase plane separately
and adopt the notation of@11#, p. 570 for the Jacobian elliptic
functions.

FIG. 2. Basic unperturbed phase plane~when a50) for Eq.
~2.19!. The orbitsqk(f,v) are shown for various values of the
parameterk. For fixed boundary conditionsf5f1 ,f2 the corre-
sponding solutions are marked by the thick lines. The solutions
matching these conditions are unique foruku.1, but, as discussed
in the text, there can be solutions corresponding to ‘‘triple walls’’
when uku,1: here this is shown fork50.7.
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C. Inner and outer subharmonics

1. Inner subharmonics:0<zkz<1, a50

For simplicity we only consider the plus sign in~2.26!
since changing the sign ofk gives the minus solution. In this
case~2.26! becomes@12#

t52F~sin21@cos~f!/k#,k!, ~2.27!

whereF is the elliptic integral of the first kind. It follows that

sn~2t,k!5
cosf

k
, ~2.28!

where sn is the usual Jacobian elliptic function. Since sn is
an odd function int, we finally have

f5cos21@2k sn~t,k!#, ~2.29!

v5
df

dt
5k cn~t,k! ~2.30!

and note that~see@12#, p. 48!

sinf5dn~t,k!, ~2.31!

cosf52k sn~t,k!, ~2.32!

where cn and dn are Jacobian elliptic functions. Hence the
inner subharmonic orbits are

qk5„cos21@2k sn~t,k!#, k cn~t,k!…, ~2.33!

with period @11#

Tk54K~k!, ~2.34!

whereK is the complete elliptic integral of the first kind.
From ~2.33! we see that whenk561 we recover the sepa-
ratrices~of infinite period! at ~2.20! and ~2.21! since@11#

sn~t,61!5tanht, ~2.35!

cn~t,61!5secht, ~2.36!

noting thatp can be added tof because the solutions repeat
in the phase plane everyp and cos21 is an odd function.
Since theqk are periodic it is clear from~2.33! that we need
to consider only 0,k,1 in our analysis, the negative values
of k generating the same orbits. Finally,k50 in ~2.33! gives
the center point (p/2,0).

2. Outer subharmonics:zkz>1, a50

As before, we choose the plus sign in~2.26!: it will be
shown thatk.1 corresponds to the subharmonics above
q1, while k,21 corresponds to those belowq21. For
k.1 we have from~2.26! ~see@12#, p. 176!

t5
1

k
FSsin21F sinf

A12
1

k2
cos2f

G ,1kD ~2.37!

and hence

snS kt,
1

kD5
sinf

A12
1

k2
cos2 f

. ~2.38!

Noting that

dn2S , 1kD1S 1k2D sn2S , 1kD51 for uku.1, ~2.39!

it then follows that fork.1 the subharmonics aboveq1 are

qk5~f,v !

5S sin21HA12
1

k2
sdFkt,

1

kG J ,Ak221 ndFkt,
1

kG D ,
~2.40!

with

sinf5A12
1

k2
sdS kt,

1

kD , ~2.41!

cosf5cdS kt,
1

kD . ~2.42!

Replacingk by 2k is equivalent to choosing the minus
sign in ~2.26!. By repeating the above working, it is straight-
forward to show that fork,21 the subharmonics below
q21 in Fig. 2 are

qk5~f,v !5S p2sin21HA12
1

k2
sdFkt,

1

kG J ,
2Ak221 ndFkt,

1

kG D , ~2.43!

with

sinf5A12
1

k2
sdS kt,

1

kD , ~2.44!

cosf52cdS kt,
1

kD . ~2.45!

The period of all the outer subharmonics withuku.1 is @11#

Tk5
4

uku
KS 1kD . ~2.46!

Remark. It is clear from the above discussion and Fig. 2
that all the subharmonicsq k with periodsTk are continuous
and fill the phase plane. Also, from~2.34! and ~2.46!,
Tk→` monotonically ask→12 or 11. It is then straightfor-
ward to verify that all the necessary conditions are satisfied
for an application of the Melnikov method outlined in@9#, p.
185.
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D. Features of the phase plane related to sample thickness

In order to gain some insight into the role of the param-
eter k we can, for the moment, consider a sample of finite
thickness and introduce the rescaled variablet̄ defined by

t̄5
t

tmax
5

1

tmax
E
0

f dh

Ak22cos2h
, ~2.47!

tmax5E
0

p dh

Ak22cos2h
, ~2.48!

where for convenience the plus sign in~2.26! has been cho-
sen and it is assumed thatk.1. This corresponds to being in
the upper half plane of periodic orbits in Fig. 2. It is then
clear thatv is never zero and hence there are no walls for
k.1, there are only smeared out configurations. If the
sample thickness isd and we suppose that the director is
fixed at f50 andp on the bounding surfaces then, from
~2.12! and ~2.16! ~with a50 andz050)

tmax5
d

l
5dE0S eae0

B̄3
D 1/2 ~2.49!

and therefore from~2.48! and ~2.49! it is seen thatk is re-
lated to the sample depth: asd increases,k decreases to 1.
Figure 3 shows the effect ofk upon the director phase angle
f for k51.2, 1.1, and 1.01. Ask decreases~i.e., as the
sample depthd increases! thep walls are seen to develop a
smaller wall width~the distance overt̄ for whichf changes
from p/4 to 3p/4) centered aroundf5p/2. Also, ask in-
creases the sample depth decreases. This is as expected since
the thinner the sample is, the largerdf/dzmust be in order
to facilitate a rotation of thec director throughp across the
sample. Physically, there is a competition between the elastic
and electric torques. Whenl!d, that is, the electric torque
dominates over the elastic torque, then thec director will
remain parallel to the field throughout most of the sample
and one or more walls will appear depending on the bound-
ary conditions imposed on the sample. Forl@d, for ex-

ample, when the electric field is weak, that is, the elastic
torque dominates over the electric torque, thec-director pro-
file will be a slowly varying function. Equation~2.49! shows
tmax to be a universal parameter linkingd and l for these
solutions: ford/l ~or dE0)5const,k can be calculated from
~2.48! to give the relevant, unique trajectory in the phase
plane in Fig. 2. When the boundary conditions are 0 andp
thenl@d corresponds tok→`, while l!d corresponds to
k→11. All of this is expected from the physics of the prob-
lem and these results are evident from the mathematics in
Eq. ~2.48!.

Whenk51 we obtain the walls described and discussed
in @7#. For 0,k,1 there are solutions forf that are of a
similar nature to those discussed fork.1. In this casetmax
needs to be suitably redefined~since the walls are no longer
p reorientations of thec director!. For symmetric boundary
conditions, that is, f15p/22d and f25p/21d for
0,d,p/2, thek value for the solutions will decrease with
increasing value of the control parametertmax5d/l ~in-
creasing the sample thickness and /or the electric field!. In
the case of a very large electric field the trajectory may have
to start and end in the lower half of the phase plane, ulti-
mately corresponding, for example, to a ‘‘triple wall’’ when
k;12 or k;211, wheretmax;`. This information can be
seen from Fig. 2: the thick lines on parts of the trajectory
curves are such that the solutions match the boundary con-
ditions marked atf1 and f2. For k.1 there is only one
possible part of the trajectory that can be a solution. How-
ever, if 0,k,1, then the solutionf can exhibit a triple wall
by lying on a trajectory such as that shown in Fig. 2 when
k50.7. The phase anglef will decrease from the boundary
condition f1 to a minimum value and then increase to a
maximum value~larger thanf2) before decreasing tof2 as
shown. Of course, as can be seen from Fig. 2, there is also a
single wall solution withf5f1,f2 on the boundaries for
k50.7. The relevant solution depends on the derivatives of
f at the boundaries.

III. THE SUBHARMONIC MELNIKOV FUNCTION

Suppose the electric field is tilted to the layers~so that
aÞ0) and letqk be a subharmonic orbit such that its period
Tk satisfies the resonance condition

Tk5mT/n ~3.1!

for some relatively prime integersm and n ~i.e., m and n
have no common factor other than 1!, where

T5
2p

v̄
,` ~3.2!

denotes the period of the perturbation term in Eq.~2.19!. We
will see later that for the cases of interest we find that
n51 andm is an even integer. Define the wedge product of
f andg by

f`g5 f 1g22 f 2g1 . ~3.3!

The subharmonic Melnikov function for aqk satisfying~3.1!
is defined by

FIG. 3. Fork.1 the sample depthd increases ask decreases to
1. If f is to maintain itsp wall asd increases then the wall width
decreases and is centered aroundf5p/2. Heret̄ is essentially the
normalized rescaled variable that is related to the finite sample
depth as discussed for Eq.~2.47! in the text.
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Mk
m/n~t0!5E

0

mT

f„qk~t!…`g„qk~t!,t1t0… dt ~3.4!

and is said to have a simple zero att1 if

Mk
m/n~t1!50,

d

dt0
Mk

m/n~t1!Þ0. ~3.5!

We now quote the following theorem from@9#.
Theorem.Let hk be as defined in Eq.~2.24!. If ~i!

Mk
m/n(t0) has simple zeros and is independent ofa and ~ii !

dTk /dhkÞ0, then there is a constanta(n) depending only
on n such that for 0,a<a(n) Eq. ~2.19! has a perturbed
subharmonic orbit of periodmT.

This theorem will allow us to show that there exist per-
turbed periodic solutions foraÞ0 in ~2.19! @and hence per-
turbed solutions to~2.10!# when the initial data lie off the
separatrices~whena50). This is in contrast to the results of
@7#, where chaotic solutions are shown to occur if the initial
data lie onq61 ~at a50); other specific periodic solutions
that satisfy the resonance condition~3.1! will persist ~with
perhaps different periods! after small perturbations. Periodic
solutions in the variablet represent time-dependent spatially
periodic twisting of thec director throughout the sample in
the z direction, the orientation of the director being uniform
in each smectic layer. From~2.12!, ~2.16!, ~3.2!, and the
theorem, the perturbed period of suchc-director orientations
in the z direction will be

zk5lmT5S B̄3

eae0
D 1/22mp

v̄E0

. ~3.6!

Alternatively, if one observes the sample at a particular po-
sition z1 say, then the time period for the twisted structure to
be seen repeating itself atz1 as time progresses, is from
~2.13!, ~2.16!, ~3.2!, and the theorem,

tk5
mTt0

a sin2u
5

4mpl5

aeae0v̄E0
2sin2u

. ~3.7!

Here, of course,m is related to the initial data via the choice
of subharmonicqk satisfying~3.1!. The range ofa for which
the results are valid depends on the constanta(n).

IV. EXISTENCE OF PERTURBED SUBHARMONICS

In this section we prove that there exist periodic solutions
to Eq. ~2.19! when aÞ0 is sufficiently small using the
Melnikov theorem in Sec. III.

A. Perturbed inner subharmonics: 0<zkz<1, aÞ0

As mentioned in Sec. II, it is sufficient to consider
0,k,1. By ~2.34!, ~3.1!, and~3.2! the resonance condition
forces

Tk54K~k!5
2mp

nv̄
. ~4.1!

From @12#, K(k) is a strictly monotonically increasing func-
tion with p/2,K(k),` and therefore Eq.~4.1! can be

solved uniquely for each pair of relatively prime positive
integersm andn to give k5k(m,n), provided

m

n
.v̄. ~4.2!

This means that for any givenv̄, the numbersm andn can
be chosen to satisfy Eq.~4.2!, resulting in a uniquek(m,n)
found from ~4.1!. This procedure leads to a unique unper-
turbed orbit qk(m,n)(t) of period Tk(m,n) . The Melnikov
method will show that such an orbit persists after small per-
turbations and the new orbit will have period
mT52mp/v̄.

We now suppose that for a givenv̄ we have chosenm
andn satisfying~4.2!, leading to a uniquek(m,n) fulfilling
~4.1!. First, by ~2.24! and ~2.34!

dTk
dhk

5
dTk
dk S dhkdk D 21

5
4

k

dK

dk
~4.3!

for any k and does not equal zero sinceK is strictly mono-
tonically increasing. Therefore condition~ii ! of the Melnikov
theorem is satisfied. It only remains to calculate
Mk(m,n)

m/m (t0).
For ease of notation writek5k(m,n). From ~3.1! and

~4.1!, mT5nTk54nK(k), and hence from Eqs.~2.19! and
~2.29!–~2.33!,

Mk~m,n!
m/n ~t0!5E

0

4nK

f„qk~t!…`g„qk~t!,t1t0… dt

5E
0

4nK

vS 2v1cotu sinf

1
j

2
cos@v̄~t1t0!#sin~2f! Ddt

5I 11cotuI 21jI 3 , ~4.4!

where

I 152E
0

4nK

v2~t! dt, ~4.5!

I 25E
0

4nK

v~t!sinf dt, ~4.6!

I 35E
0

4nK

v~t!cos@v̄~t1t0!#cosf sinf dt. ~4.7!

Let E and Ē denote the complete and incomplete elliptic
integrals of the second kind, respectively, and denote the
usual Jacobian amplitude function by am. Observing that
@12#

Ē„am~4nK,k!,k…5Ē~2np,k!54nE~k!, ~4.8!

it follows from ~2.30! and @11#, p. 630, that

I 152k2E
0

4nK

cn2~t,k! dt
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54n~12k2!K~k!2Ē„am~4nK,k!,k…

54n@~12k2!K~k!2E~k!#. ~4.9!

From ~2.30! and~2.31! and the periodic properties of sn@11#

I 25kE
0

4nK

cn~t,k! dn~t,k!dt5kE
0

4nK d

dt
sn~t,k!dt50.

~4.10!

The integralI 3 requires more extensive computations. From
~2.30!–~2.32!

I 352k2E
0

4nK

cos@v̄~t1t0!#cn~t,k!dn~t,k!sn~t,k!dt

5
1

2E0
4nK

cos@v̄~t1t0!#
d

dt
dn2~t,k! dt

5
1

2
$dn2~t,k!cos@v̄~t1t0!#%0

4nK

1
v̄

2E0
4nK

sin@v̄~t1t0!# dn
2~t,k! dt. ~4.11!

Since dn(0,k)5dn(4nK,k)51 and, from ~4.1!, 4nK
52mp/v̄, the first term on the right-hand side of~4.11! is
zero and hence, by the series representation for dn2 ~see@13#,
p. 286!,

I 35
v̄

2E0
4nK

sin@v̄~t1t0!#FE~k!

K~k!
1

p2

K2~k!

3(
j51

`

j cosS jp

K~k!
t D cschS jpK~k8!

K~k! D Gdt,

~4.12!

where k85A12k2. Again, from ~4.1!, it follows that the
E/K term in ~4.12! is zero and so~4.12! can be rewritten as

I 352
v̄3n2

m2 (
j51

`

j cschS 2 j v̄nm K~k8! D
3E

0

4nK

sin@v̄~t1t0!#cosS 2 j v̄nm t Ddt. ~4.13!

From @11#, p. 140, and~4.1! it can be verified that

E
0

4nK

sin@v̄~t1t0!#cosS 2 j v̄nm t Ddt

55 0 if jÞ
m

2n

mp

v̄
sin~v̄t0! if j5

m

2n
.

~4.14!

For integers, 2j can only equalm/n with m andn relatively
prime whenn51 andm is even. Consequently,~4.13! is

I 35H pv̄2 csch@v̄K~k8!#sin~v̄t0! if n51, m is even

0 otherwise.
~4.15!

It now finally follows from ~4.4!, ~4.9!, ~4.10!, and ~4.15!
that

Mk~m,n!
m/n ~t0!5H 4@~12k2!K~k!2E~k!#1jpv̄2sin~v̄t0!csch@v̄K~k8!# if n51, m is even

4n@~12k2!K~k!2E~k!# otherwise.

~4.16a!

~4.16b!

From ~4.16! it is clear that in order to find a suitableqk on
which to apply the Melnikov theorem we must haven51
andm even. For a fixedv̄ we begin by choosingm even
with m.v̄ @from by ~4.2!# and solve Eq.~4.1! for the unique
value ofk between 0 and 1. This value ofk is then inserted
into ~4.16a! to enableMk

m/1(t0) to be evaluated. This proce-
dure can be carried out numerically. As an example to show
that there existm andk such thatMk

m/1 has simple zeros we
try j55.2, v̄52.5, andm54 and find thatk50.9408 to
four decimal places. The resultingMk

m/1 is plotted in Fig. 4.
This figure shows that the Melnikov function obviously has
simple zeros int0 and therefore there exists a perturbed pe-
riodic subharmonic orbit of periodmT5Tk : both the per-
turbed and unperturbed subharmonics have the same period
since, in this case,n51.

Physically, sincemT5Tk , the spatial periodicity at~3.6!
is unaffected, but the introduction of a time period via~3.7!
means that the periodic alignment of the director travels in
time. From~3.7!, tk→` asa→01, that is, we recover the
static ~infinite period! solution. Also, from~3.7!, asE0 in-
creases the time period decreases.

If nÞ1 orm is odd, then~4.16b! holds andMk
m/n cannot

have simple zeros. This means that perturbed orbits have no
fixed points and that they must move either inward or out-
ward across the unperturbed orbit~see@9#, p. 196!.

B. Perturbed outer subharmonics: zkz>1, aÞ0

We shall only consider the casek.1: as mentioned be-
low, the Melnikov function fork,21 is identical. From
~2.46!, ~3.1!, and~3.2! the resonance condition in this case is

54 6419SUBHARMONICS ARISING FROM THE APPLICATION . . .



Tk5
4

k
KS 1kD5

2mp

nv̄
. ~4.17!

From @12#, Tk is a monotonically decreasing function ink
and 0,Tk,`. Hence, forv̄.0 any relatively prime posi-
tive integersm andn can be inserted into~4.17! to solve for
a uniquek5k(m,n) @this is in contrast to the restriction
imposed at Eq.~4.2! for the inner subharmonics#. For any
given v̄ we can then always find a unique perturbed orbit
qk(m,n)(t) of periodTk(m,n) .

We now suppose that we have solved~4.17! for
k5k(m,n) for given v̄ and relatively primem andn. From
~2.24! and ~2.46!

dTk
dhk

5
dTk
dk S dhkdk D 21

52
4

k3
F K̇S 1kD

k
1KS 1kD G , ~4.18!

where the overdot denotesd/d(1/k). Equation~4.18! is never
zero sinceK andK̇ are always positive fork.1 ~see@11#, p.
905! and therefore condition~ii ! of the Melnikov theorem is
satisfied. As in Sec. IV A, it only remains to calculate
Mk(m,n)

m/n (t0). From ~3.1! and ~4.17!

mT5nTk5
4n

k
KS 1kD , ~4.19!

and therefore from Eqs.~2.19! and~2.40!–~2.42! the Melni-
kov function is again provided by Eq.~4.4!, except that in
this case we replaceI 1, I 2, andI 3, respectively, by

J152E
0

~4n/k!K~1/k!

~k221! nd2S kt,
1

kDdt, ~4.20!

J25E
0

~4n/k!K~1/k!S k2
1

kD snS kt,
1

kDnd2S kt,
1

kDdt,

~4.21!

J35E
0

~4n/k!K~1/k!S k2
1

kD cos@v̄~t1t0!#

3snS kt,
1

kD cnS kt,
1

kDnd3S kt,
1

kDdt. ~4.22!

The first of these integral can be evaluated via@11#, Eqs.
16.26.6 and 17.4.6, to give

J1524nkES 1kD , ~4.23!

while straightforward computations using@12#, Eq. 5.137.2,
show

J250. ~4.24!

The integralJ3 is equivalent to

J35
1

2
~k221!E

0

4nK~1/k!

cos@v̄~u/k1t0!#
d

du

3S 1

dn2S u, 1kD D du. ~4.25!

Since

dnFu1KS 1kD G5
Ak221

k dnS u,1kD
, ~4.26!

we can use the series for dn2 @13# with a further integration
by parts, using~4.17! when necessary, to yield

J35
v̄

2E0
4nK~1/k!

sin@v̄~u/k1t0!#F kES 1kD
KS 1kD

1
kp2

K2S 1kD
(
j51

`

~21! j
j cosF jpu/KS 1kD G

sinhF jpKSA12
1

k2D Y KS 1kD GG du. ~4.27!

The first term in~4.27! is zero and from@12#, p. 140,

FIG. 4. Plot of the inner subharmonic Melnikov function
Mk

m/n(t0) given by Eq.~4.16! for the particular values indicated in
the figure. It is clear that it has simple zeros; this indicates the
existence of perturbed periodic solutions when the anglea between
theE field and the smectic planes is sufficiently small, as discussed
in the text.
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E
0

4nK

sin@v̄~u/k1t0!#cos~ jpu/K ! du5H 0 if jÞ
m

2n

2nKS 1kD sin~v̄t0! if j5
m

2n
.

~4.28!

As in Sec. IV A, 2j can only equalm/n with m andn relatively prime whenn51 andm is even. Consequently, with the aid
of ~4.1!,

J35H ~21!m/2pv̄2 cschF v̄KSA12
1

k2D Y kGsin~v̄t0! if n51, m is even

0 otherwise.

~4.29!

Hence from~4.1!, ~4.23!, ~4.24!, and~4.29!

Mk~m,n!
m/n ~t0!5H 24nkES 1kD 1~21!m/2jpv̄2sin~v̄t0!cschF v̄KSA12

1

k2D Y kG if n51, m is even

24nkES 1kD otherwise.

~4.30!

In a similar way to the inner subharmonics, Eq.~4.30! shows
that the Melnikov theorem can be applied whenn51 and
m is even. As mentioned earlier, in this case there is no
restriction such as that at~4.2! and therefore we can set
n51 and choose any evenm. This will lead to a unique
k5k(m,1).1 for any givenv̄.0, via Eq.~4.17!. Figure 5
showsMk

m/1 when j510, v̄52.8, andm56, resulting in
k51.0093 to four decimal places. Clearly, in this particular
exampleMk

m/1(t0) has simple zeros int0 and hence there
exists a perturbed periodic subharmonic orbit of period
mT5Tk . As before, both the perturbed and unperturbed sub-
harmonics have the same period sincen51. The comments
in the last two paragraphs of Sec. IV A equally apply to the
outer subharmonics.

For k521 Eqs.~2.43!–~2.45! lead to analogous integrals
in ~4.20!–~4.22!. It is easily verified that the periodmT is the
same and the Melnikov function is exactly that given by
~4.30!.

C. Remarks on the parametersj and v̄

From Eqs.~4.16! and ~4.30! it is possible to construct
simultaneous values ofj and v̄ for which Mk

m/1 has simple
zeros for either of the perturbed inner or outer subharmonics.
For the inner subharmonics (0,k,1) we note that
(12k2)K(k)2E(k) is an even function ofk and is strictly
monotonically increasing for 0<k<1, achieving its maxi-
mum value of 1; csch@v̄K(k8)#, for fixed v̄, is also strictly
monotonically increasing on the same interval ofk. For
Mk

m/1 to have simple zeros we require thatj.jmin
in , where

jmin
in 5

4

pv̄2
@E~k!2~12k2!K~k!# sinh~v̄K~k8!.

~4.31!

Further, from~4.1!, we have, forn51,

v̄5
mp

2K~k!
~4.32!

and therefore, providedj.jmin
in , we can find combinations

of v̄ and k such that~4.32! holds for a given value ofm.
Using expansions forK(k) given in @12#, we can show that
for n51

v̄→m as k→01, ~4.33!

v̄→0 as k→12. ~4.34!

In a similar way, we can obtain results for the outer sub-
harmonics (1,k,`). From Eq.~4.30! it is seen that in this
case the Melnikov function can only have simple zeros when
j.jmin

out , where

jmin
out5

4kES 1kD
pv̄2 sinhH v̄

k
KSA12F1kG

2D J . ~4.35!

FIG. 5. Plot of the outer subharmonic Melnikov function
Mk

m/n(t0) given in Eq.~4.30! for the values indicated in the figure.
As in Fig. 4, the existence of perturbed periodic orbits is indicated
by the presence of simple zeros, as mentioned in the text.
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Further, from~4.17! with n51,

v̄5
p

2

mk

KS 1kD
. ~4.36!

As before, we can calculate combinations ofv̄ andk when
n51, which ensure thatMk

m/1 has simple zeros for various
choices of suitablem, providedj.jmin

out . Using expansions
similar to those above, we find that

v̄→0 as k→11, ~4.37!

v̄;mk as k→`. ~4.38!

The results of this section are summarized in Figs. 6 and
7. In Fig. 6 the combinations ofv̄ andk that ensure simple
zeros of the Melnikov function are plotted for the special
cases ofm52, 4, and 6, this figure being applicable for
0<v̄, k,`. Figure 7 is a plot ofjmin againstk whenever
~4.32! or ~4.36! holds in the cases ofm52, 4, or 6; jmin
actually tends to1` for anym ask→1, as can be seen from
the expansions@12# for K(k) andE(k):

jmin
in ;

4

mp
lnS 4

A12k2
D→` as k→12, ~4.39!

jmin
out;

4

mp
lnS 4k

Ak221
D→` as k→11. ~4.40!

This divergence atk51 is indicated by the triangle-dashed
line in Fig. 7.

If we are given a frequencyv̄, then Fig. 6 will provide
relevant values ofm and k ~related to the sample depth as
discussed above! for the resonant subharmonics. These val-
ues ofm andk can be inserted into Fig. 7 to find the value of
jmin . As examples, we can return to Figs. 4 and 5 and use
Figs. 6 and 7 to see that the displayed values for

m, k, v̄, andj are all sufficient for the existence of sub-
harmonics sincej.jmin in each case.

V. DISCUSSION

We have shown that there are nonchaotic solutions for the
problem outlined in Sec. II above when we consider a special
perturbation to the dynamic equation~2.10!, which leads to
the governing equation~2.18!. Unperturbed solutions~ob-
tained when the anglea between the electric field and the
smectic planes is zero! are parametrized in the phase plane
~Fig. 2! by the variablek, which is related to the initial data,
boundary conditions, and sample depth, as discussed is Sec.
II D. These unperturbed~phase plane! solutions are em-
ployed via a Melnikov analysis to deduce whether or not
there exists chaos in the possible solutions for smallaÞ0.
The case ofk51 was shown in a previous article@7# to
result in chaotic solutions to the dynamic equation~2.18!,
which is in contrast to the results presented here where non-
chaotic perturbed solutions are proved to exist whenkÞ1
and the frequencyv̄ and magnitudej of the augmented field
satisfy the criteria displayed in Figs. 4–7. Depending on the
boundary conditions, the conditions for such solutions to ex-
ist are essentially determined from Eqs.~4.16! and ~4.30!.
Some special cases were displayed in Figs. 4 and 5, which
show that the subharmonic Melnikov function can satisfy the
requirements of the theorem stated in Sec. III above for the
existence of perturbed solutions. The case wherek51 is
shown to be special and relates to an infinite sample of smec-
tic liquid crystal. Thatk51 is unusual is again highlighted
by the remarks in Sec. IV C, wherejmin diverges for
k→1; this warrants the separate treatment contained in@7#.
The analysis here forkÞ1 is shown to be qualitatively dif-
ferent from that in@7#.

We hope that the results presented in this article will en-
courage more investigations of stability and instability in
smectic-C liquid-crystal samples across which electric fields
are applied.

FIG. 6. Curves represent the combinations ofv̄ and k, which
ensure simple zeros of the Melnikov functionMk

m/1 , provided
j.jmin . Heren51 andm takes the values indicated in the figure.
For a givenv̄, the correspondingk andm provide the correspond-
ing jmin , which can be found from Eqs.~4.31! and ~4.32! or Eqs.
~4.35! and ~4.36!.

FIG. 7. Oncek and m have been determined for a given
v̄,jmin can be calculated from Eqs.~4.31! or ~4.35!. jmin is shown
for the values indicated. From Eqs.~4.39! and ~4.40!, jmin→` as
k→1 for all values ofm; this is indicated by the triangle-dashed
line.
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