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It was recently showil. W. Stewart, T. Carlsson, and F. M. Leslie, Phys. Rev49:2130(1994] that
chaotic instabilities can occur theoretically in planar samples of sme€cliguid crystals. These instabilities
were found by considering a special perturbation to the dynamic equation when a static electric field was
augmented by a weak, slowly oscillating electric field across a sample of sr@ediigsd crystal. This
analysis relied on a special traveling-wave solution of the dynamic equation. In this paper we show that there
are also other solutionsubharmonicswith different boundary conditions that do not exhibit chaos and these
solutions can be related to sample depth. An application of a Melnikov theory for subharmonics in the phase
plane provides criteria for the existence of nonchaotic solutions to the specially perturbed dynamic equation.
Such criteria involve the normalized frequency of the augmented field and its magnitude; the present analysis
gives insight into the special previous results involving chaos and gives a general phase plane interpretation of
solutions, confirming that both chaotic and nonchaotic behavior is possible, depending on the sample depth,
boundary conditions, and properties of the augmented oscillating f@ld63-651X96)03812-3

PACS numbd(s): 61.30 Cz

[. INTRODUCTION ing field enabled a perturbation analysis to be carried out
based on the known exact solution for the static field case.
Liquid crystals are generally composed of elongated mol-The resulting perturbed partial differential equation was

ecules where the average long molecular axes locally aligiransformed to a second-order nonlinear ordinary differential
along one common direction in space described by a uniequation and the phase plane for this equation was shown to
vectorn, called the director. Smecti€-liquid crystals form  have separatricethomoclinic orbit$ that corresponded to
layered structures in which the directormakes an angl® the possible static field solutions. Melnikov's meth(zke
with respect to the layer normal. We shall assume thit  [9]) was then employed to prove the existence of chaotic
always some fixed constant. The unit layer normal is denotegolutions whenever the initial data were chosen sufficiently
by a and, as introduced by de Genrjé$ a unit vectorc that  close to the separatrices in the phase plane, that is, whenever
is perpendicular ta describes the direction of the average the known exact solutions were perturbed by a suitable small
molecular tilt of the sample with respect to the layer normal.oscillating field. It is the purpose of this article to complete a
The directorc is the unit orthogonal projection of onto the ~ full analysis of the phase plane and examine the conse-
smectic planes. A complete description of the orientation ofjuences for any initial data, not necessarily near the separa-
n in smectic liquid crystals can clearly be deduced from thetrices[7]. It will be shown that if the initial data are chosen
knowledge ofa andc. The orientation ot (and hencen) is  far enough away from the separatrices, then perturbed peri-
known to be influenced by the application of electric fieldsodic solutions do exist.
[1-3], the result commonly being a Fagericksz transition in
the case of strong anchoring, Whl(_:h occurs Wbéweglns to Il. DESCRIPTION OF THE PROBLEM
rotate around the layer normal while the layers remain intact.

Static and moving domain walls that leave the layer structure In this section we summarize the equations derivedn
undisturbed are also possilji4—6]. where full details can be found. The essential governing
In [7] the existence of chaotic instabilities in the orienta-equation is(2.19 below. A phase plane interpretation of
tion of ¢ (and hence the molecular ayesas theoretically special unperturbed solutions representing traveling domain
demonstrated when a static electric field augmented by walls is also introduced. Other unperturbed solutions that are
weak, slowly oscillating field is applied across a sample ofperiodic in the phase plane will be derived. These unper-

smectic liquid crystal arranged in parallel planar layers, thigsurbed orbits will form the basis for applying the subhar-
field making a small angle with the plane of the layers. Criti-monic Melnikov method to Eq2.19 in order to determine

cal values for the onset of chaotic dynamics were found fothe stability or persistence of perturbed periodic solutions to
the frequency and strength of the oscillating field and smec¢2.19.
tic tilt angle when reasonable approximations were made.

The existence result presented Hj made use of an explicit

static field solution to the partial differential equation derived

from the continuum theory of Leslie, Stewart, and Nakagawa Consider a sample of nonchiral smea@icliquid crystal
[8]. Augmenting the static field with a weak, slowly oscillat- in the bulk where the equidistant smectic layers lie parallel

A. Basic equations
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(’ y W= Wpyk+ Welec- 2.9
~ z .
~ If it is assumed thalte| <1, then we can use EgR.3)—(2.9)
< and the smectic continuum dynamic theory of Leslie, Stew-
§ g art, and Nakagawg8] to derive the dynamic equation
~ X 5
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FIG. 1.
tor n, which makes an angle with the layer normah. The director
c is the unit vector parallel to the projection of the direatoonto
the smectic planes. Theaxis coincides with the orientation of the
layer normala and thex andy axes lie within the smectic planes.
The electric fieldE makes an angle: with the smectic planes as
shown.

with the xy plane, the unit layer normal being parallel to

thez axis(see Fig. 1 The directorsa andc are subject to the
constraints
a-a=c-c=1, a.c=0 (2.1

and, since we assume there are no dislocatiamaust fur-
ther fulfill [10]

Vxa=0. (2.2

An electric fieldE is applied across the sample at a small

angle« to the plane of the layers

E=E, (cosy,0,sin). (2.3

€
1+ ECOE{ wet)

Equation(2.3) corresponds to a static electric figlof mag-
nitude E,) that is gradually augmented by a small ac field
having a slowly varying frequencye where € is suitably
small.

We make the following ansatz fa,c, andn:

a=(0,0,1, (2.9
c=(cosp(z,t),sing(z,t),0), (2.5
n=a cosv+c sind, (2.6

where, as depicted in Fig. 1, the orientationcofvithin the
layers is given by the phase anghz,t). The resulting bulk
energy density is given by7]

5

1
Whulk= 5 Bs

¢

9z

(2.7

HereBj is the positive elastic constant related to the rotation

of the c director observed from layer to layer,having the

same uniform orientation within each individual layeee

[3] for more details The electric free energy density[i$]
Welec™ — %eafo(n' E)Zl (2.8

where g is the permittivity of free space ang}, is the di-

X (Sina cos9+ cosx sinfd cosp)cosx sing sing=0.
(2.10

Here A5 is the viscosity coefficient related to the rotation of
the directorn around a ficticious cone whose semivertical
angle equals the smectic tilt anghe

As shown in[7], to make Eq.(2.10 more tractable we
assume that @ <1 and

Average molecular alignment described by the unit vec-

e=¢a (2.1

for some positive constard, which is essentially related to
the magnitude of the ac field. To simplify the equation fur-
ther we introduce the typical length and time scales

sing B_3 12 21
- E_o Ea€0 ] ( . 2
to=2\5/€x€60E3, (2.13

respectively, where we have used the fact that the elastic
constantB; has a tilt angle dependen@;~ Bssir?d. The
constantB; is approximately the temperature-independent
part of B; (see[3] for detaily. For mathematical conve-
nience we introduce the rescaled frequeacgs

_ ity
“7 Sirke”

(2.19

Motivated by the static field solutions discussed 7tb], we
investigate solutions of the form

d(z,t)=p(7), (2.19

t
— —a Sinfo,
to

z—2,
A

(2.19

T=

where z, is an arbitrary point. Examining the behavior of
solutions neary means that we can further suppose

aN
tngsmza.

With the assumptions contained in Eq2.11)—(2.17), Eq.
(2.10 becomes

d?¢
d2

(2.19

+a—=

a, ¢ cotf sing+ %[1+ (a codwT)]sin(2¢),

(2.18

electric anisotropy of the liquid crystal, assumed to be posi-

tive. We set

which can be rewritten in the equivalent first-order system



54 SUBHARMONICS ARISING FROM THE APPLICATION ... 6415

d ( ¢) ( v ) q ! as indicated in the figure. Far=0 the exact expres-

sions for these orbits are solutions(&19, namely,
dr\v 1sin(2¢) @19 y

0 gt(7)=(¢,v)=(2 tan Yexp7)], sechr)
ta ¢ =(cos !(—tanhr), sechr), (2.20
—v +cotf sing + Ecos{w_r)sin(2¢>)
q X7 =(¢,v)=(w—2 tan {exp 7)],—sechr)

:(f1(¢’v) a<gl(¢’v’7)) =(7—cos Y(—tanhr),—sechr). (2.21)
fa(pv) 92(,v,7)

tl . . . .
=f(¢,v)+ag(p,v,7), (2.19 g~ - represent walls that arise from the dielectric and elastic

torques: these walls are known to be chaotically unstable for
initial data chosen in the phase plane sufficiently close to
wherev=d¢/d7 and, for ease of notation below, we have gjther of theq™?* orbits[7].
introduced the functionf(¢,v) andg(#,v,7) as indicated. At this point it is clear from Fig. 2 that other trajectories

In [7] it was demonstrated that E¢2.19 can exhibit  are availabldlabeledg®). These consist of two types of sub-
chaotic dynamics whenevérandw lie within certain ranges  harmonic periodic orbits, those between the separatrices and
[dependent upon the fixed value &fin (2.12]. Since the those outside the separatrices, as shown in the figure. Choos-
choice ofz, is arbitrary it can be concluded that chaos maying initial data(¢(0),v(0)) at any point then determines a
be present wherever the ac field is applied. Nevertheless, thig|ution to (2.19 when a=0. Our analysis in the sections
result is based solely upon the fact th2t19 can be consid- below depends on a perturbation to these known exact solu-
ered as a special perturbation to the unperturbed ver-  tjons.
sion of (2.19 for certain initial data lying on either of two At a=0 the unperturbed systef@.19 has Hamiltonian
separatrices in the phase plane representing traveling domai given by
walls. A natural question to ask is whether or not it is pos-
sible to carry out a similar analysis for other orbits in the H(é,v)=1v2+1cog26) (2.22
phase plane, corresponding to initial data that are not neces-
sarily close to these separatrices. This requires the pha§<|ance
plane approach, which is discussed next.

dH dH

B. The unperturbed phase plane A 96 ESin(2¢>). (2.23

When =0 the solutions t0(2.19 include the separa-
trices in the phase plane as shown in Fig. 2, which repeat§o obtain the exact solutions for the subharmonics we con-
itself everyr. The arrow represents the direction of the so-sider the possibilities foH to be constant and set
lution in the phase plane as— +« (this corresponds to
t— —oo: reversing the arrows gives the- +c behavioj. H(g"(7))=2%(2k?*—1)=h,, (2.24
Two such homoclinic orbits are possible, labelgt and
where k is a parameter, the form dfi arising from the
constant of integration and being chosen to simplify the no-

ol q tation used below. It turns out th&tcan be thought of as
| qs | T being related to the sample depth, as discussed in Sec. Il C
. I o below. From(2.22 and (2.29
7 . w“
0.5 +0. +0.7
) — € e )y (dT —kz(l— 200§¢> (2.29
ql \\4/ q
_1 | — ]
R N L B and therefore
/_4\ q»l.S o —]
2[ e
02 00 02, 04 06 ! 08 10 12 = (2.26

o/ i _kf \/ —Fcoszn

FIG. 2. Basic unperturbed phase plafvéhen «=0) for Eq. o
(2.19. The orbitsg“(¢,v) are shown for various values of the ~ Some of the qualitative features of the phase plane repre-
parameter. For fixed boundary conditiong= ¢, ,¢, the corre- ~ sented in Fig. 2 will now be examined and related to the
sponding solutions are marked by the thick lines. The solutiongample depth and existence of walls. We now examine the
matching these conditions are unique ff>1, but, as discussed inner and outer subharmonics in the phase plane separately
in the text, there can be solutions corresponding to “triple walls” and adopt the notation ¢11], p. 570 for the Jacobian elliptic
when|k|<1: here this is shown fok=0.7. functions.
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C. Inner and outer subharmonics

1. Inner subharmonics:0<|k|<1, a=0

For simplicity we only consider the plus sign 2.2
since changing the sign &fgives the minus solution. In this

case(2.26) becomeg12]
=—F(sin [ cog ¢)/k],k), (2.27
whereF is the elliptic integral of the first kind. It follows that
co
sr(—r,k)=Ts¢, (2.28
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sing

\/1—%00§ )

(2.39

o

Noting that

1 1
dnz(,E + F

snz(,%)zl for |[k|>1, (2.39

it then follows that fork>1 the subharmonics abowg are

q“=(o,v)

where sn is the usual Jacobian elliptic function. Since sn is

an odd function inr, we finally have

¢p=cos {—ksn7,k)], (2.29
vz?j—f_):k cn( k) (2.30
and note thatsee[12], p. 48
sing=dn(7,k), (2.3)
cosp=—k sn(7,k), (2.32

B B R
=| sin 2 Sq k7

i)

(2.40
with
_ [1 1
sing=\/1- 12 sn{ kT, E) : (2.4
1
cos¢=cd( kr, E) . (2.42

where cn and dn are Jacobian elliptic functions. Hence the

inner subharmonic orbits are

g“=(cos -k sn7,k)], ken(rk), (2.33

with period[11]

T=4K(k), (2.39
where K is the complete elliptic integral of the first kind.
From (2.33 we see that whek= =1 we recover the sepa-
ratrices(of infinite period at (2.20 and(2.21) since[11]

(2.39
(2.39

noting thatm can be added tgp because the solutions repeat
in the phase plane every and cos! is an odd function.
Since theg* are periodic it is clear froni2.33 that we need
to consider only 8<k<<1 in our analysis, the negative values
of k generating the same orbits. Finalks= 0 in (2.33 gives
the center point £/2,0).

sn(7,*=1)=tanhr,

cn(7,*1)=sechr,

2. Outer subharmonics{k|>1, a=0

As before, we choose the plus sign (.26): it will be

shown thatk>1 corresponds to the subharmonics above

q*, while k<—1 corresponds to those belog . For
k>1 we have from(2.26 (see[12], p. 176

sing

\/1—%005%5

1
r=—F|sin"?

K (2.37

|~

and hence

Replacingk by —k is equivalent to choosing the minus
sign in(2.26. By repeating the above working, it is straight-
forward to show that fok<<—1 the subharmonics below
q tin Fig. 2 are

1 }

qk=(¢,v)=(w—sin‘l{ \/1- % SQ{ kr, —

k

1
—Jk*—1 nu{kr,E ) (2.43
with
) / 1 1
sing=\/1— i@ Sf< kT, F) , (2.44
1
cosp= —cd( kr, E) ) (2.45

The period of all the outer subharmonics wiki>1 is[11]

1

Kl (2.49

=K
Tkl

Remark It is clear from the above discussion and Fig. 2
that all the subharmonias® with periodsT, are continuous
and fill the phase plane. Also, fronf2.34) and (2.46),
T,— monotonically ak—1~ or 1. It is then straightfor-
ward to verify that all the necessary conditions are satisfied
for an application of the Melnikov method outlined][ig), p.
185.
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1.0 i} ample, when the electric field is weak, that is, the elastic
torque dominates over the electric torque, thdirector pro-
0sl file will be a slowly varying function. Equatio(®2.49 shows
= Tmax 10 b€ a universal parameter linkirgand \ for these
| solutions: ford/\ (or dEg) =const,k can be calculated from
B 06 (2.48 to give the relevant, unique trajectory in the phase
= . plane in Fig. 2. When the boundary conditions are 0 and
041 Y then\>d corresponds té&— o, while A<d corresponds to
L —k=101 k—1*. All of this is expected from the physics of the prob-
02} e N IEtt k=11 lem and these results are evident from the mathematics in
I ‘/ P PR k=12 Eq (248)
0.0 Lz , , , Whenk=1 we obtain the walls described and discussed
0.0 0.2 0.4 0.6 0.8 1.0 in [7]. For 0<k<1 there are solutions fo$ that are of a
T similar nature to those discussed for 1. In this caser,y

] needs to be suitably redefingsince the walls are no longer
leIG._ 3. Fork>1 the Sampllle d‘zp_tu |ncreaseﬁ ak ‘:}ecre"’:f‘es_dt%  reorientations of the directoy. For symmetric boundary
1. If ¢ is to maintain itsw wall asd increases then the wall widt conditions, that is, p,=m/2—8 and ¢,=ml2+5 for

decreases and is centered arodnd /2. Herer is essentially the o 5 /> thek value for the solutions will decrease with
normalized rescaled variable that is related to the finite sample

) : increasing value of the control parameteyf,=d/\ (in-
depth as d d for E@.4 the text. . - ax R
epth as discussed for E@.47) in the tex creasing the sample thickness and /or the electric)fiddd

the case of a very large electric field the trajectory may have
to start and end in the lower half of the phase plane, ulti-

In order to gain some insight into the role of the param-mately corresponding, for example, to a “triple wall” when
eterk we can, for the moment, consider a sample of finitey._ 1~ o k~— 1", where 7,,,~. This information can be

thickness and introduce the rescaled variabliefined by seen from Fig. 2: the thick lines on parts of the trajectory

curves are such that the solutions match the boundary con-
= T _ 1 (¢ dpy 2.47) ditions marked atp; and ¢,. For k>1 there is only one
Tmax  TmaxJ 0 ‘/kz_coszn’ ' possible part of the trajectory that can be a solution. How-
ever, if 0<k<1, then the solutio) can exhibit a triple wall
by lying on a trajectory such as that shown in Fig. 2 when
Tmax™ | T (2.48  k=0.7. The phase angl will decrease from the boundary
0 Jk?—cos'y condition ¢, to a minimum value and then increase to a
maximum valug(larger thang,) before decreasing t¢, as
. . "~ shown. Of course, as can be seen from Fig. 2, there is also a
sen and it is assumed that-1. This corresponds to being in single wall solution with=,, ¢, on the boundaries for

the upper h_alf plane of periodic orbits in Fig. 2. It is then k=0.7. The relevant solution depends on the derivatives of
clear thatv is never zero and hence there are no walls for

k>1, there are only smeared out configurations. If thed) at the boundaries.
sample thickness il and we suppose that the director is

D. Features of the phase plane related to sample thickness

77 dzy

where for convenience the plus sign(id26) has been cho-

fixed at =0 and = on the bounding surfaces then, from . THE SUBHARMONIC MELNIKOV FUNCTION
(2.12 and(2.16 (with a=0 andz,=0) Suppose the electric field is tilted to the layés® that
112 a+#0) and letg® be a subharmonic orbit such that its period
- =9=dE €a€o (2.49 T satisfies the resonance condition
max™ \ 0 83

T,=mT/n (3.2
and therefore from2.48 and(2.49 it is seen thak is re- ) ) _ )
lated to the sample depth: asincreasesk decreases to 1. for some relatively prime integens andn (i.e., m andn
Figure 3 shows the effect & upon the director phase angle Nave no common factor other thaj, Where
¢ for k=1.2, 1.1, and 1.01. Ak decreasegi.e., as the
sample deptfd increasesthe 7 walls are seen to develop a T= 2_7T<QO (3.2
smaller wall width(the distance over for which ¢ changes o '
from /4 to 3w/4) centered around= /2. Also, ask in-
creases the sample depth decreases. This is as expected siigfotes the period of the perturbation term in £319. We
the thinner the sample is, the largi$/dz must be in order  will see later that for the cases of interest we find that
to facilitate a rotation of the director throughm across the n=1 andm is an even integer. Define the wedge product of
sample. Physically, there is a competition between the elastitandg by
and electric torques. Whex<d, that is, the electric torque
dominates over the elastic torque, then thelirector will fAg=119,—f,0;. (3.3
remain parallel to the field throughout most of the sample
and one or more walls will appear depending on the boundThe subharmonic Melnikov function forgt satisfying(3.1)
ary conditions imposed on the sample. Ror-d, for ex- is defined by
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i mT o ‘ solved uniquely for each pair of relatively prime positive
My (To):J’0 f(a(7)A\g(@(7),7+ 1) d7 (3.4 integersm andn to give k=k(m,n), provided

m

and is said to have a simple zeromtif o (4.2)
n
d
M () =0, WME‘m(ﬁ#O- (3.5  This means that for any givem, the numbersn andn can
0 be chosen to satisfy E@4.2), resulting in a uniqud(m,n)
We now quote the following theorem frof®)]. found from (4.1). This procedure leads to a unique unper-

Theorem. Let h, be as defined in Eq(2.24. If (i) turbed orbitg“™"(7) of period Tymn . The Melnikov
Mfkn/“(q-o) has simple zeros and is independentoénd (ii) method will show that such an orbit persists after small per-
dT,/dh,#0, then there is a constani(n) depending only turbations and the new orbit wil have period
on n such that for &< e<a(n) Eqg. (2.19 has a perturbed MT=2m7/w. .
subharmonic orbit of periochT. We now suppose that for a givam we have chosem

This theorem will allow us to show that there exist per-andn satisfying(4.2), leading to a uniqué(m,n) fulfilling
turbed periodic solutions foi+0 in (2.19 [and hence per- (4.1). First, by(2.24) and(2.34)
turbed solutions tq2.10] when the initial data lie off the dT. dT./dh\ -1 4dK
separatriceéwhena=0). This is in contrast to the results of Tk _k(_"> -
[7], where chaotic solutions are shown to occur if the initial dhy dk | dk k dk
data lie ong™?! (at «=0); other specific periodic solutions
that satisfy the resonance conditi¢®1) will persist (with
perhaps different periodigfter small perturbations. Periodic
solutions in the variable represent time-dependent spatially t i
periodic twisting of thec director throughout the sample in M i(m,ny(70) - ] ]
the z direction, the orientation of the director being uniform  For ease of notation writk=k(m,n). From (3.1) and
in each smectic layer. Fron2.12, (2.16), (3.2, and the (4.1, mT=nT,=4nK(k), and hence from Egg2.19 and
theorem, the perturbed period of suctdirector orientations (2.29-(2.33,
in the z direction will be

4.3

for any k and does not equal zero sinkeis strictly mono-
tonically increasing. Therefore conditigin) of the Melnikov
heorem is satisfied. It only remains to calculate

4nK
5 )MZW B M (70) = fo HA(AYG(7), 7+ 70) dr

€a€0/ wEg f4nK
= v

zkz)\mTz(

—v +cotdsing
Alternatively, if one observes the sample at a particular po- 0
sition z; say, then the time period for the twisted structure to ¢
be seen repeating itself a; as time progresses, is from + Ecos{HﬁL T0)]SIN(2¢) |dT

(2.13, (2.16), (3.2, and the theorem,

_ _ 5
b= asin’6 aeaeomEgsinzﬁ. S where
Here, of coursem is related to the initial data via the choice l,=— f4nsz(T) dr (4.5
of subharmonigX satisfying(3.1). The range ofx for which ’
the results are valid depends on the constem).
4nK
IV. EXISTENCE OF PERTURBED SUBHARMONICS 2= fo v(7)sing dr, (4.6

In this section we prove that there exist periodic solutions

4nK
to Eq. (2.19 when a#0 is sufficiently small using the |3:f " v(r)co§w(7+ 1) ]cospsing dr.  (4.7)
Melnikov theorem in Sec. Ill. 0

Let E and E denote the complete and incomplete elliptic

A. Perturbed inner subharmonics: 0<|k|<1, a#0 h - :
integrals of the second kind, respectively, and denote the

As mentioned in Sec. Il, it is sufficient to consider ysyal Jacobian amplitude function by am. Observing that

0<k<1. By (2.39), (3.1), and(3.2) the resonance condition [12]

forces o L

E(am4nK,k),k)=E(2nm,k)=4nE(k), (4.8
aw
Tk=4Ko=——. 42 it follows from (2.30 and[11], p. 630, that
From[12], K(k) is a strictly monotonically increasing func- l,= _k2f4nKCI’12(T k) dr
tion with #w/2<K(k)<« and therefore Eq(4.1) can be 0 ’



54 SUBHARMONICS ARISING FROM THE APPLICATION ... 6419

=4n(1—kz)K(k)—E_(an(4nK,k),k) where k' =\1—k?. Again, from (4.1), it follows that the
E/K term in(4.12 is zero and sd4.12 can be rewritten as
=4n[(1—k?)K(k)—E(k)]. (4.9

From(2.30 and(2.31) and the periodic properties of §hl]

E cscl‘( 2—K(k ))

4nK 4nK d
|2:kfo cn(7,k) dn(T,k)dekfo d—TSr(T,k)dT=O. N
(4.10 X f 4nKsir'[WT+To)]COS<2%T)dT. (4.13
0

The integrall 3 requires more extensive computations. From
(2.30-(2.32
From[11], p. 140, and4.]) it can be verified that

3= —kZJ:nKCOS{HH— 7o) Jen( 7, K)dn( 7, k)sn(r,k)dr

1 [4nK d j‘mKSir’[HT—F T )]CO{ 2@ T) dr
= Efo cog w(7+ To)]a_ dr(7,k) dr 0 0 m

= —{dnz(r k)cogw(7+ 7)o" R AT
- (4.14
w [4nK M in@ro) it j= Sl
+ Ejo sifw(7+ 79)] dré(7,k) dr. (4.11 w 0 2n

Since dn(&k)=dn(4nK,k)=1 and, from (4.1, 4nK
=2mma/w, the first term on the right-hand side @f.11) is
zero and hence, by the series representation forsie[13],

For integers, 2 can only equaim/n with m andn relatively
prime whenn=1 andm is even. Consequently4.13 is

p. 286,
@ [4nK E(k) @2 mw? csciwK(k')]sin(wry) if n=1, m is even
'SZEL siftolr+ 70l 5™ ki) 's=10  otherwise.
(4.19
j K (k'
XE j COS(K(k) )csc}‘(%) dr,
It now finally follows from (4.4), (4.9), (4.10, and (4.195
(4.12  that
|

. 4[(1-k*K(K)—E(K) ]+ émw’sinfwry)csciwK (k)] if n=1, m iseven (4.163
Micmm(70) = 4n[(1-k?)K(k)—E(k)] otherwise. (4.16h

|
From(4.16 it is clear that in order to find a suitabtg on Physically, sincenT=T,, the spatial periodicity at3.6)

which to apply the Melnikov theorem we must hane=1  is unaffected, but the introduction of a time period &a7)
andm even. For a fixedo we begin by choosingn even  means that the periodic alignment of the director travels in
with m> [from by (4.2)] and solve Eq(4.1) for the unique  time. From(3.7), ty—%= asa—0", that is, we recover the
value ofk between 0 and 1. This value &fis then inserted ~Static (infinite period solution. Also, from(3.7), asE, in-
into (4.163 to enableM () to be evaluated. This proce- Créases the time period decreases.

/
dure can be carried out numerically. As an example to show !f N#1 orm is odd, then(4.16b holds anaM*" cannot
that there exism andk such thatV" M1 pas simple zeros we have simple zeros. This means that perturbed orbits have no
try £=5.2, @=2.5, andm=4 and find thatk=0.9408 to fixed points and that they must move either inward or out-

four decimal places. The resultind"* is plotted in Fig. 4. ward across the unperturbed ortsee{d], p. 196.

This figure shows that the Melnikov function obviously has .

simple zeros inr, and therefore there exists a perturbed pe- B. Perturbed outer subharmonics: [k|>1, a#0

riodic subharmonic orbit of periochT=T,: both the per- We shall only consider the cage>1: as mentioned be-
turbed and unperturbed subharmonics have the same peritalv, the Melnikov function fork<—1 is identical. From
since, in this case)=1. (2.46), (3.1), and(3.2) the resonance condition in this case is
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1. and therefore from Eq$2.19 and(2.40—(2.42 the Melni-
; kov function is again provided by Ed@4.4), except that in
this case we replade, |,, andl;, respectively, by

E (4n/K)K(1/k) 2 P 1 g
= - Jl——fo (k*=1) n 747 (4.20
4L m=4
o n=1
S5t ®=25
. £=52 (4n/K)K(1/k) 1 1 1
BE (k = 0.9408) J2= o k_E S kT'E nd? kT’E dr,
o0z A 08 08 1.0 (4.2)
Ty / 21
(4n/K)K(1/k) 1
FIG. 4. Plot of the inner subharmonic Melnikov function Ja= fo k_E cogw(7+70)]
Mk’“’”(ro) given by Eq.(4.16) for the particular values indicated in
the figure. It is clear that it has simple zeros; this indicates the 1 1 1
existence of perturbed periodic solutions when the angbetween Xs kT:E cn kT'E nd® kT@ dr. (4.22

theE field and the smectic planes is sufficiently small, as discussed

in the text. The first of these integral can be evaluated M4], Egs.

16.26.6 and 17.4.6, to give

Trﬁ(g)—ﬁ- (4.17) J1=—4nkE<E), 4.23
From[12], T, is a monotonically decreasing function kn
and 0<T <. Hence, fore>0 any relatively prime posi-
tive integeram andn can be inserted int.17) to solve for
a uniguek=k(m,n) [this is in contrast to the restriction 3,=0. (4.24
imposed at Eq(4.2) for the inner subharmoni¢sFor any
given o we can then always find a unique perturbed orbit
q“™"(7) of period Tym.n) -
We now suppose that we have solved.17) for

. - . . 1 4nK(1/k) d
k=k(m,n) for given w and relatively primem andn. From ‘]3:_(k2_1)f cog o(u/k+79)] =—
(2.24) and (2.46) 2 0 du

while straightforward computations usifig2], Eq. 5.137.2,
show

The integrald; is equivalent to

du. (4.25

k

K (4.18

1
(1 x| ——
K|= 1
dT, dT./dh\ * 4 (k) 1 dnz(u,—>
— =] =—= K ' k
dh, dk\ dk k
. : Since
where the overdot denotegd(1/k). Equation(4.18) is never

zero sinceK andK are always positive fok>1 (see[11], p.

905 and therefore conditiofii) of the Melnikov theorem is dn
satisfied. As in Sec. IV A, it only remains to calculate

Mt (70). From (3.1) and (4.17)

u+K

1 k?—1
E”:—l' (429
k dn(u,E)

o (L we can use the series for i3] with a further integration
mT_nTk_?K(R)' 4.19 by parts, using4.17 when necessary, to yield
1 . 1
 (4nK(1k) KE k km2 = _ jcos jmu/K K
Jsz—f siMw(u/k+79)] +——> (—1) du. (427
e e 23>j=1 i 'K\/l—l e
k k sinn jm kT K

The first term in(4.27) is zero and fron{12], p. 140,
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m

0 if j#=—

anK 2n

f sif w(u/k+ 7p)]cog jmu/K) du= (4.28
0

) 1y i .m
nKEsm(wro) i j—ﬁ.

As in Sec. IV A, Z can only equai/n with m andn relatively prime whem=1 andm is even. Consequently, with the aid

of (4.1,
(—1)™27w? csc&{ﬂ(( 1—i) / klsifwry) if n=1, mis even
3= k® ’ (4.29
0 otherwise.
Hence from(4.1), (4.23, (4.24), and(4.29
1 p— _ 1 . .
—AnkEl ” +(—1)™2¢ ro?sin(wTy)csch wK 1-12 k| if n=1, m iseven
Mima (70) = X (4.30
—4nkE( E) otherwise.
|
In a similar way to the inner subharmonics, E4.30 shows C. Remarks on the parametersé and o
that the Melnikov theorem can be applied whes 1 and From Egs.(4.16 and (4.30 it is possible to construct

m is even. As mentioned earlier, in this case there is nNQitaneous values af and @ for which Mﬂ"l has simple
restriction such as that 4#.2) and therefore we can Set ,eros for either of the perturbed inner or outer subharmonics.
n=1 and choose any evem. Th'S.W'" lead to a unique — cor the inner subharmonics €k<1) we note that
k=k(m,1r)ni1 for anX g'vei‘i>o’ via Eq._(4.17). Flgure _5 (1-k?)K(k)—E(K) is an even function ok and is strictly
shows M, ™ when g__lo’ w=2.8, andm—6_, res_ultmg_m monotonically increasing for €k=<1, achieving its maxi-
k=1.0093 to four decimal places. Clearly, in this particular ,,,m value of 1: csdrwK (k')], for fixed @, is also strictly
exampleM""(o) has simple zeros im and hence there monotonically increasing on the same interval kof For
exists a perturbed periodic subharmonic orbit of periodMLnll to have simple zeros we require ttfa&g‘”» where
mT=T,. As before, both the perturbed and unperturbed sub- mn

harmonics have the same period simeel. The comments '

in the last two paragraphs of Sec. IV A equally apply to the n.=
outer subharmonics.

77_?[E(k)—(l—kz)K(k)] sinh(wK (k).

Fork=—1 Eqgs.(2.43—(2.45 lead to analogous integrals (4.3D)
in (4.20—(4.22. It is easily verified that the periat T is the _
same and the Melnikov function is exactly that given byFurther, from(4.1), we have, fom=1,
(4.30. . mmz
w= 2K (K) (4.32
/\ / and therefore, provideg>¢". . we can find combinations
of w and k such that(4.32 holds for a given value ofm.
& Using expansions foK (k) given in[12], we can show that
E » forn=1
= _ .
w—m as k—07, (4.33
n= _ —
0%2210?0 w—0 ask—1". (4.39
(k = 1.0093)

: LT In a similar way, we can obtain results for the outer sub-
0.0 0.2 04 0.6 0.8 1.0 harmonics (kX k<®). From Eq.(4.30 it is seen that in this
case the Melnikov function can only have simple zeros when

Ty/ 21 > ¢ where
FIG. 5. Plot of the outer subharmonic Melnikov function 1
M{""(7,) given in Eq.(4.30 for the values indicated in the figure. 4kE<E) _
As in Fig. 4, the existence of perturbed periodic orbits is indicated out _ sin EK( 1— E (4.35
by the presence of simple zeros, as mentioned in the text. min Tw? k k '
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FIG. 6. Curves represent the combinationseofind k, which
ensure simple zeros of the Melnikov functidv
&> &nin- Heren=1 andm takes the values indicated in the figure.
For a givenw, the corresponding andm provide the correspond-
ing &min, Which can be found from Eq$4.31) and (4.32 or Egs.

(4.35 and(4.36).

Further, from(4.17) with n=1,

As before, we can calculate combinationseoland k when

n=1, which ensure thab{"* has simple zeros for various
choices of suitablen, provided > ¢
similar to those above, we find that

eI 12 141618 20 22 24

Using expansions

w—0 ask—1t,

w~mk as k—oo,
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5 I i / —a—mfork~1
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> NAS
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k

FIG. 7. Oncek and m have been determined for a given
o, &min can be calculated from Eqé&4.32) or (4.35. &, is shown
for the values indicated. From Eqgl.39 and (4.40), &qin—> as
k—1 for all values ofm; this is indicated by the triangle-dashed
line.

m, k, o, and¢ are all sufficient for the existence of sub-
harmonics sinc&> &, in each case.

V. DISCUSSION

We have shown that there are nonchaotic solutions for the
problem outlined in Sec. Il above when we consider a special
perturbation to the dynamic equatié®.10, which leads to
the governing equatiofi2.18. Unperturbed solutiongob-
tained when the angle between the electric field and the
smectic planes is zerare parametrized in the phase plane
(Fig. 2) by the variablek, which is related to the initial data,
boundary conditions, and sample depth, as discussed is Sec.
Il D. These unperturbedphase plane solutions are em-

The results of this section are summarized in Figs. 6 angloyed via a Melnikov analysis to deduce whether or not
7. In Fig. 6 the combinations ab andk that ensure simple there exists chaos in the possible solutions for smail0.
zeros of the Melnikov function are plotted for the special The case ofk=1 was shown in a previous articlg] to
cases ofm=2, 4, and 6, this figure being applicable for result in chaotic solutions to the dynamic equati@u18),

0<w, k<. Figure 7 is a plot of,,, againstk whenever
(4.32 or (4.36 holds in the cases ain=2, 4, or 6; &nin
actually tends tot « for anym ask— 1, as can be seen from
the expansiongl2] for K(k) andE(k):

in

out __
min

~—In
min mar

—k) —oo as k—17, (4.39

1)HOO as k—1%. (4.40

which is in contrast to the results presented here where non-
chaotic perturbed solutions are proved to exist wkenl

and the frequencyw and magnitude& of the augmented field
satisfy the criteria displayed in Figs. 4—7. Depending on the
boundary conditions, the conditions for such solutions to ex-
ist are essentially determined from Edd.16) and (4.30.
Some special cases were displayed in Figs. 4 and 5, which
show that the subharmonic Melnikov function can satisfy the
requirements of the theorem stated in Sec. Ill above for the
existence of perturbed solutions. The case wHerel is
shown to be special and relates to an infinite sample of smec-
tic liquid crystal. Thatk=1 is unusual is again highlighted

This divergence ak=1 is indicated by the triangle-dashed by the remarks in Sec. IV C, wheré,, diverges for

line in Fig. 7.

If we are given a frequencw, then Fig. 6 will provide

k—1; this warrants the separate treatment containgddfin
The analysis here fdt#1 is shown to be qualitatively dif-

relevant values ofm andk (related to the sample depth as ferent from that in7].

discussed aboydor the resonant subharmonics. These val- We hope that the results presented in this article will en-
ues ofm andk can be inserted into Fig. 7 to find the value of courage more investigations of stability and instability in
Emin- As examples, we can return to Figs. 4 and 5 and usemectic€ liquid-crystal samples across which electric fields
Figs. 6 and 7 to see that the displayed values forare applied.
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